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The stability of the equilibrium position of an autonomous Hamiltonian system with two degrees of freedom is investigated. It 
is assumed that the equilibrium is stable in the linear approximation, the frequencies 0)1 and 0)2 of small oscillations are connected 
by the resonance relation 0)1 -- 30)2, and the Hamilton function is not sign-definite in the neighbourhood of the equilibrium 
position. The critical case when it is necessary to take into account terms higher than the fourth power in the expansion of the 
Hamilton function in series in order to obtain strictly valid conclusions on the stability of the equilibrium position is investigated. 
Sufficient conditions for stability and instability, which are expressed in terms of the coefficients of the expansion up to the sixth 
power inclusive, are obtained. The results are used in the problem of the stability of steady rotation of a dynamically symmetrical 
artificial satellite - of a rigid body around the normal to the plane of the circular orbit of its centre of mass. © 2001 Elsevier 
Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider  an au tonomous  Hamil tonian  system with two degrees of  f reedom. Suppose  the origin of  
coordinates  qj = 0, p: = 0 ( j  = 1, 2) of  phase space is an equilibrium posit ion of  the system, while the 
Hami l ton  funct ion H(ql ,  q2, Pl, P2) is analytical in a certain ne ighbourhood  of  it. I f  the funct ion H is 
sign-definite, then by Lyapunov's  theorem, the equilibrium position is stable [1] (we can take the function 
H as Lyapunov 's  function).  We will assume that  the funct ion H is not  sign-definite but  the eigenvalues 
-----io) 1, -----io)2, o f  the matrix of  the linearized equat ions  of  the per turbed  mot ion  are pure imaginary and 
different, so that the equilibrium is stable in the l inear approximation.  

We will assume that for th-order  resonance occurs in the system, i.e. the frequencies 031 and o) 2 o f  
small oscillations are connected  by the relation 0) 1 = 3o) 2. With a suitable choice of  the canonically 
conjugate  variables qj, pj we can write the Hami l ton  funct ion [2] in the form 

H = oltrj - ( 0 2 r  2 + c20fi 2 + c,,rlr 2 + c02 4 + rl~r~(a,3 s i n ,  + b,3 c o s , ) +  06 

, = q ) l + 3 ( P 2 ,  q j =  2~jsinq)j,  p j =  2~cos (p j ,  j = l , 2  

(1.1) 

where c20 , Cll , c02 , a13 and b13 are constant  coefficients, and the set of  terms, the power of  which is higher 
than the fifth in qj, pj is denoted  by 06. 

Suppose resonance  terms are actually present  in expansion (1.1), i.e. ale3 + b213 ~ 0. We will put  

× =1C2o + 3c,, + 9c021 [27(a~3 + b~3)] -N (1.2) 

I f  × > 1, the equil ibrium posit ion qj = O, pj = 0 is stable, while if × < 1, we have instability [2]. 
The  case o f  × = 1 is critical. In  the approximate  system, the Hamil tonian of  which is obtained f rom 

formula  (1.1) by dropping terms higher than the four th  power  in qi, PJ, the equil ibrium posit ion is 
unstable. But it can be shown that terms whose powers are higher than the four th  can be chosen in 
such a way as to obtain stability or  instability, as desired. For  example, consider a system with a Hamil ton 
function o f  the form 

H = 3r t - r 2 + r22 + 3.~lr~ r 2 s i n , +  ari 3 (1.3) 
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Here we have used the notation from (1.1), and a is constant coefficient. The value of × for Hamiltonian 
(1.3) is equal to unity, i.e. we have the critical case. 

A system with Hamiltonian (1.3) has two first integrals 

V~=r 2 - 3 f i = c = c o n s t ,  V 2 = H = h = c o n s t  (1.4) 

I fa  = 1, the equilibrium position is stable, which can be shown using Lyapunov's theorem on stability 
[1], taking the function V = V 2 + V 2 as Lyapunov's function. When a = 1 it will be positive-definite 
in q,  r e, whence the stability follows. 

If a = -1, the equilibrium position will be unstable. To convince ourselves of this, consider the motion 
at the common levels V1 = 1, V2 = 0 of the first integrals (1.4). At these levels either rl = r2 = 0 or 
r 2 = 3q = 27(1 + sin ~). The first case is of no interest to us since it corresponds to the equilibrium 
position itself. In the second case we have a particular solution which is doubly asymptotic to the point 
rl = 0. The trajectory corresponding to this solution is the cardioid rl -- 9(1 + sin ~). If t -+ + oo, then 
r 1 -+ 0, while 0 --+ -~/2. In this case the following equalities hold 

r~/'/ 
= -81(1 + sin ¢)2, - "  = -9rl 2 cos(J) 

dt dt 

If we put ~(0) = -rt/2 - bt, where 0 < bt ~ 1, then rl(0 ) = 18 sin2(bt/2) - ~t 2. The angle ~ decreases 
monotonically with time, and as long as it remains in the third quadrant (-rt < 0 < -~/2), the value of 
r I increases monotonically from as small a value as desired r1(0) to rl = 9, which also indicates that the 
equilibrium position is unstable. 

This example shows that the problem of the stability of an equilibrium position at resonance 
m] = 3m2 in the critical case, when × = 1, requires a special consideration which takes into account 
terms higher than the fourth power in expansion (1.1). 

2. F O R M U L A T I O N  OF T H E  R E S U L T  

Using a normalizing canonical transformation (obtained, for example, using the Depr i t -Hori  method 
[2]), the variables qj, pj can be chosen so that the Hamilton function H(ql, q2, Pl, P2) has a normal form 
not only in terms up to the fifth power, as in (1.1), but also in terms up to the seventh power inclusive. 
Calculations show that then 

H = o h q - m 2 r  2 +c20fi 2 +c,,qr2 +c02 r2 +q½r~(a,3sin¢+b,3cosOo)+ 

+c30fi 3 + c2,fiZr2 + c,2rtr22 +co, r 3 + rl~r~(a33sin*+b33cos,)+ 

+ r, 4Z(a,, + b,, cos,)+ 08 (2.1) 

where we have used the notation from (1.1), and the set of terms whose powers in qj,pj is higher than 
the seventh, is denoted by O s. 

Theorem. If the coefficients of Hamilton function (2.1) are such that the quantity ×, defined by (1.2), 
is equal to unity, but, in which case, the inequality 

(c20 + 3cl] + 9%2)(C3o + 3c21 + 9q 2 + 27c03) - 

-27[a,3(a33 + 3a,s)+b,3(b33 + 3b,.s)] < 0 (2.2) 

is satisfied, the equilibrium position ql = q2 = Pl = P2 = 0 is unstable; for the opposite sign in inequality 
(2.2) we have stability. 

3. P R O O F  OF T H E  T H E O R E M  

The theorem is proved using the KAM-theory and the second Lyapunov method [1, 3], and in technical 
respects is based very much on the approach in [4], used when analysing the critical case of the problem 
of the stability of a Hamilton system with one degree of freedom with fourth-order resonance that is 
periodic with respect to the independent variable. 
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Instability. To prove the assertion on instability it is sufficient to show instability at the zeroth level 
of  the energy integral H = const, on which the equilibrium position in question is situated. From the 
relation H = 0 we obtain 1"2 = -K(rl, q~l, ~Pe). The motion along the isoenergy level H = 0 is described 
by Whit taker 's  equations [5], which have the form of Hamil ton 's  equations, where the function K plays 
the role of  the Hami l ton  function, while the independent  variable is the quanti ty q02. 

We will introduce the independent  variable q0~ = -q0z instead of  q0~. The quantity q0~ in a small 
ne ighbourhood of the equilibrium position increases monotonical ly and can play the role of  time in 
the stability problem. If we make the univalent canonical replacement  of variables r 1 = r'1/4, q~l = 4(p~ 
+ 3q0~, a Hamil tonian of  the following form will correspond to motion along the isoenergy level 
H = 0  

* * * * 2  * • * * * * 3  K* =[b  2 +3-¢r3(a;3sin4qol +bl3COS4qO,)]t i +(b  3 +033sm4q) l +b33cos4qo , ) r  l + 

( . . . . .  /[ . . . . .  / ] ' 3 o (  / + d3+dl3Sm4q) I+el3cos4q)  I b2+3 al3sln4q~ t+bt3cos4q01 rl + r1.4 (3.1) 

Here 

b2 =(C2o +3c11 +9Coz)/(16o32 ), a~3 =a13/(16to2), b,3 = b,3/(16o~2) 

b 3 =(C3o + 3c2, + 9c,2 + 27c03)/(64co2), a33 = 3-qt-3(a33 + 3a,5)/(64~2) 

b33 = 3-qt3(b33 + 3bls)/(64eo2), d 3 =(c, ,  +6Co2)/(4(o2) 

(3.2) 

d13 = 3~¢t-3a,3/(8o~2), e,3 = 3.ut'3b13/(8~2) 

The structure of  Hamil tonian (3.1) can be simplified somewhat by making a replacement of variables 
in accordance with the formulae 

g~l = c(q~ +)0 ,  rl = r, g~2 = 8• (3.3) 

[ (  - ' ,  • . 
8 = 27 aj3 + b sin 43( = -3~f38a13 , cos4 Z = -3~f3c~Sb13 , ~ = sign b 2 (3.4) 

In the new variables the motion is described by canonical equations with Hamil tonian 

K = (I - cos 4tp)r 2 + (~'3 + ]t33 sin 4qo + 533 cos 4qo)r 3 + 

+ (d  3 + dr3 sin 41p + el3 cos 4q))(1- cosnqI)r 3 + O(r 4 ) (3.5) 

~'3 =c8b3, ~f33 =8(a;3cos4z-crb;3sin43() ,  533 =8(a33sin4z+ab33cos43()  

dj3 = •dl3 cos 4 Z - e 13 sm 43(, e 13 = ~dl3 sm 43( + el3 cos 43( 
(3.6) 

An even greater simplification of Hamiltonian (3.5) can be obtained using the replacement of variables 

qI=0-T33(4[el)-Ip, r=lel-~p, x=lelT! (e=~ '  3 +533 ) (3.7) 

This replacement  eliminates the term r3~'33 sin 4q0 in it and reduces the new Hamil tonian to the form 

where 

K = (1 - cos40)p 2 +[s + d ( l - cos40 ) ]p  3 +O(p 4) (3.8) 

s = sign e, d = (d 3 - 533 + d13 sin 40 + e,3 cos 40)le [-' (3.9) 
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If s = -1, instability occurs, which can be proved using Lyapunov's first theorem on instability [1]. 
The sign-variable function V can be taken [4] in the form V = 92 sin 40. For sufficiently small 9 its 
derivative dV/d~] will be negative-definite [4] by virtue of the equations of motion with Hamiltonian 
(3.8). But it follows from formulae (3.2), (3.4), (3.6), (3.7) and (3.9) that the equalitys = -1 is equivalent 
to condition (2.2). The assertion of the theorem on instability is proved. 

Stability. Suppose now that s = 1, i.e. we have the opposite sign in inequality (2.2). In the system with 
Hamiltonian (2.1) we make the replacement (a canonical transformation with valency U 1) 

. . . ( .  ,) 
% = 4 % + 3 c p  2, q)z=-(p~, q=ef i  /4, r 2 = E 3 r  J - 4 r  2 /4, t=t*/o32 (3.10) 

Since we are investigating motion in the neighbourhood of equilibrium, we have 0 < E ,~ 1. The following 
Hamiltonian corresponds to the new variable 

, ' - - ' { [  . . . .  r)] ( . . )  r 2 +e  b2+3 a~3sm4qo I +bl3cos4qo ti*2+fl t i,r2,tpt + 

I( . . . . .  ( " )  + E  b 3 + a 3 3 s l n 4 t P l  + b 3 3 c o s 4 t P l  t i + f 2  FI 'F2' lPl  +E3f3  fi*,r2,q0m,(p2;e ~ (3.11) 

The coefficients b2, a[3 , b[3, b3, a;3, b~3 are calculated from formulae (3.2). The last term in (3.11) is 
the set of terms Os from (2.1), transformed to the new variable. The explicit form of the functions fl 
and f2 in expression (3.11) is not required; it is only important that these functions should be independent 
of the variable qo~, vanish when r~ = 0 and be analytical with respect to their arguments r], r~, q)] when 
r] > 0. Note also that the variable r]/> 0, while r~ can take values of any sign. 

One more canonical transformation (with valency (r) 

* ( 0 ;  X)  * 0 ; ,  * * * " t* ( q01 = O + , ~02 = rl = Pl ,  r2 = oP2 ,  = 5x* 3.12) 

where ~, Z, 8 are defined by (3.4), leads to equations of motion with Hamiltonian 

. { (  .).2 . ( . . . ) [ (  .).3 
1-'*=~592+~ 1-c°s401 Pl +f l  Pl,p2,01 +1~ ]'3+Y33sin40~+833cos401 Pl + 

(3.13) 

where f7 is the function f. from (3.11) multiplied by a6, in which the arguments are expressed in terms 
of the new variables from formulae (3.12) while the coefficients )'3, )'33, 633 are defined by (3.6). 

Finally, we make a replacement of variables similar to (3.7) 

* -' * = le l - 'p ,  05 : w2, p~ = l e l  -'12, x" : l e l n  0, =0 -e~ '33 (41e l )p ,  P, 

In the new variables the motion is described by canonical equations with Hamiltonian 

2 l F= F(°)(I2)+£F(I)(D, I2,0;E)+£3F( ) (P , /2 ,0 ,  w2; £ ~ )  (3.14) 

where 

F ~°' = 61e1/2, F '') = ( ! -  cos4O)p 2 + g, (p, /2 , O) + •{[s + k ( I -  cos40)]p 3 + gz(P, 12,O)} 

s = s ign  e = I, k = --533 [ e [-1 

The function F is 2x-periodic in the variables 0, w 2 and for 9 > 0 and sufficiently small E is analytical 
in p, I2, 0, w2, e 1/z. The functions gl and g2 vanish when I 2 = 0. 

If we drop the last term in Hamiltonian (3.14), we obtain an approximate system with Hamiltonian 
F (°) + v_F (1). It has two first integrals F (°) + EF 0) -- h = const and 12 = I2(0) = const and is integrable. 
Suppose I2(0) is a small quantity (for example, of the order of 5/2). Then, for sufficiently small values of 
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- - -  r - .  

\,," \! h, the trajectories of the approximate system in the xl = 2P cos 0, x2 = 20 sin 0 plane will be closed, 
encircling the point xl = x2 = 0 (see [4, Fig. 3b]). For the corresponding motions of the approximate 
system we can introduce action-angle variables/j, wj (j = 1, 2). In view of the fact that, in the approximate 
system, the coordinate w2 is cyclical, one of the two pairs of these variables will be the pair 12, w2. We 
will denote the Hamilton function (3.14), written in the variables/j, wj (3' = 1, 2) by ~.  

) (3.15) 

Here ~(0) is the function F (°) from (3.14). The function • is 2r~-periodic in wl and w2, and is analytic 
in 11, 12, wl, w2 and e 1/2 when 11 > 0. 

If the following inequalities are satisfied 

312 ~: O, 31-'----~- ~ O, 31---"-~ ~ 0 (3.16) 

then, according to the KAM-theory [3], the variables Ii, 12 for all 11 > 0 remain in the region of their 
initial values: IIj01) - Ij(0) l < ce ~ (c = const > 0). Hence, to prove the assertion of the theorem on 
stability it is sufficient to show that inequalities (3.16) hold. The first of these is obviously satisfied. It 
was shown previously in [4] that the second and third hold when 12 = 0. But in view of the fact that 
the function q~(1) is analytical, the last two inequalities will also hold for sufficiently small values of 1121. 
The theorem is proved. 

4. THE S T A B I L I T Y  OF STEADY R O T A T I O N  OF 
AN A R T I F I C I A L  S A T E L L I T E  

Consider the motion of a dynamically symmetrical artificial satellite - of a rigid body about a centre of 
mass in a central Newtonian gravity field. It is well known [6], that in a circular orbit the satellite can 
move so that its axis of symmetry is always perpendicular to the plane of the orbit, while the satellite 
itself rotates around the axis of symmetry with an arbitrary constant angular velocity (cylindrical 
precession). The problem of the stability of the cylindrical precession has been investigated in some 
detail in [7-10]. The results so far obtained are as follows. 

The motion of the axis of symmetry of the satellite is described by an autonomous canonical system 
of fourth-order differential equations, which depends on two parameters c~ and 13 (or = C/A, f3 = ro/COo, 
where C andA are polar and equatorial moments of inertia, r 0 is the projection of the absolute angular 
velocity of the satellite on its axis of symmetry, which is the integral of motion, and co 0 is the angular 
velocity of motion of the centre of mass in the orbit, 0 < c~ ~< 2, - ~o < 13 < oo). The characteristic equation 
of the linearized system of equations of perturbed motion is written in the form 

K4 +ak2 + b = 0  

a = ot2132- 2~[~+ 3c~-I, b = (oc13- 1)(ot13 + 3o~ - 4) 

(4.1) 

In regions defined by the inequalities 

a > 0 ,  b > 0 ,  a z - 4 b > O  (4.2) 

there is stability, to a first approximation. In these regions, Eq. (4.1) has imaginary roots. If at least one 
of the inequalities (4.2) is satisfied with the opposite sign, then, in the characteristic equation, there is 
a root with positive real part, and by Lyapunov's theorem on stability in the first approximation [1], the 
cylindrical precession is unstable. In the figure the regions of instability are shown hatched in the plane 
of the parameters c~, 13. In the unhatched regions 1 and 2 the roots of the characteristic equation are 
pure imaginary. 

In region 1 the cylindrical precession is stable [7]. In this region the Hamiltonian H is a sign-definite 
function of the coordinates and moments q/, pj (j = 1, 2) of the perturbed motion (in qj, pj variables 
the cylindrical precession corresponds to the equilibrium position qj = pj --- 0 on the axis of symmetry 
of the satellite in an orbital system of coordinates). This enabled us to use Lyapunov's second method 
to solve the stability problem. In region 2 the function H is not sign-definite (although stability occurs 
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in the first approximation), and, to solve the problem of the stability of the cylindrical precession of 
the satellite, it was necessary to make use of modem methods of the theory of the stability of Hamiltonian 
systems [2, 11, 12]. Calculations were carried out for [3 /> -20. The problem of the stability of the 
cylindrical precession was solved (for 13 1> -20) for all points POx, 13) from region 2, except five points: 
P. and Pk (k = 1, 2, 3, 4). At the point P. (1.064, 0.425) the Hamiltonian of the perturbed motion H 
is isoenergically degenerate (see below) when terms up to the sixth power inclusive in q j ,  p j  are taken 
into account in its expansion in series. To solve the stability problem at this point one must take into 
account terms not lower than the eighth power. The points Pk (k = 1, 2, 3, 4) lie on the curve of fourth- 
order resonance 0)x = 30)2. At each of these the quantity ×, defined by (1.2), is equal to unity. Over the 
whole resonance curve the cylindrical precession is stable, with the exception of two parts of it P1, P2 
and P3 P4, on which there is instability. The boundary points ,Ok of the stability and instability sections 
a re  

Pl (1.052, -1.742), 

P2(1.087, -1.567), 

P3(1.072, 0.385), P4(1.056,0.449) 

For these points the stability problem is solved in this paper using the theorem of Section 2. 
But initially we will consider the point P.. At this point 0)1 = 1.61 and 0)2 = 0.380, and hence there 

is no resonance up to the eighth order inclusive (i.e. klc01 ~ k20)2 for natural kl and k 2 which satisfy the 
inequalities 0 < k I + k 2 ~< 8). Using a normalizing canonical transformation, obtained by the Deprit-Hori 
method [2], the variables q j , p j  were chosen so that the Hamiltonian of the perturbed motion took the 
normal form up to terms of the eighth power inclusive 

4 ) 
H=0) lq  0)2r2 + ~ k , 5 - c u r  ~ r.:,+ r t + r 2 )  (4.3) 

k + l = 2  

qj  = 2 ~ j s i n q ) j ,  p) = 2 ~ j c o s q ~ j  

where ckt are numerical coefficients. The Hamiltonian was reduced to normal form (4.3) on a computer 
in the MAPLE V system. 

We will introduce the notation 

m . . 

: Y~Cm_i,i0)10) 2 D2 rn I rn - , 
i=0 

At the point P. the quantities D 4 and D6 are equal to zero [8, 10], i.e. the Hamiltonian of the perturbed 
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motion is isoenergetically degenerate up to terms of the sixth power inclusive. In terms of the eighth 
power the degeneracy is removed, since calculations show that D s = 4.48 ~ 0. Consequently 
[2, 11, 12], the cylindrical precession of the satellite is stable for values of  ct and [3 corresponding to the 
point P, .  

To solve the problem of stability at the points Pk (k = 1, 2, 3, 4), which lie on the resonance curve 
c0a = 302, it turned out to be sufficient to consider terms up to the sixth power in the expansion of the 
Hamil tonian of the per turbed motion. At these points the Hamiltonian was reduced to normal form 
(2.1) using the Depr i t -Hor i  method in the MAPLE V system. We will denote by Ak the value of the 
left-hand side of inequality (2.2) at the point Pk. Calculations show that 

A1=0.076,  A2=-0 .097 ,  A3=-3.158,  A4=5.475  

Hence,  by the theorem in Section 2, at points Pa and / ' 4  the cylindrical precession of the satellite is 
stable, while at points P2 and P3 it is unstable. 

Hence,  the problem of the stability of the cylindrical precession of a satellite for values of the 
parameters  c~ and 13 lying inside region 2 and which satisfy the inequality 13 >I -20 (calculations were 
only carried out for these value s of ~), is completely solved. It  is unstable along the two sections P1 P2 
and P3P4 of the resonance curve 0h = 3(02 and at two of their boundary points P2 and P3, and it is stable 
for the remaining values of the parameters  a and [3. 
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